Python数据可视化-Matplotlib学习笔记(1)--折线图为例画图入门

Matplotlib的官网地址:http://matplotlib.org/

在使用Python做数据处理的时,大量的数据我们看起来并不是很直观,有时候把它图形化显示反而更能容易的观察数据的变化特征等等。

Matplotlib是一个Python的2D绘图库,它以各种硬拷贝格式和跨平台的交互式环境生成出版质量级别的图形。它提供了一整套和MATLAB相似的命令API,十分适合交互式地进行制图。而且也可以方便地将它作为绘图控件,嵌入GUI应用程序中。通过 Matplotlib,开发者可以仅需要几行代码,便可以生成绘图,直方图,功率谱,条形图,错误图,散点图等。

下面看一个例子,来源为51CTO唐宇迪老师的Matplotlib视频课程。
数据为美国统计的未就业人口占比:
这里写图片描述

import pandas as pd # 导入pandas库用来处理csv文件
import matplotlib.pyplot as plt # 导入matplotlib.pyplot并用plt简称

unrate = pd.read_csv('unrate.csv') # 读csv文件
unrate['DATE'] = pd.to_datetime(unrate['DATE']) 
# 通过pd.to_datetime函数将unrate.csv文件中'DATE'属性数据的strin数据类型转换为time类型
print(unrate.head(12)) # 打印查看前12行数据

first_twelve = unrate[0:12] # 取前12行数据

plt.plot(first_twelve['DATE'], first_twelve['VALUE']) # 画折线图,'DATE'列作为x轴,'VALUE'列作为y轴。只是这里用了csv文件里的两列分别作为x和y,实际应用中,只要指定好数据x和对应y就行。

plt.xticks(rotation=30) # 有时候x轴标签比较长,就会重叠在一起,这里旋转一定角度就能更方便显示,如下图
plt.xlabel('Month') # 给x轴数据加上名称
plt.ylabel('Unemployment Rate') # 给y轴数据加上名称
plt.title('Monthly Unemployment Trends, 1948') # 给整个图表加上标题

plt.show() # 将刚画的图显示出来

这里写图片描述

这里写图片描述

©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页